Исследование квантовой гравитации: физики настраиваются на космическое кольцо черных дыр
Автор: Уитни Клавин, Калифорнийский технологический институт, 29 мая 2023 г.
Исследования под руководством Калифорнийского технологического института предлагают новые, строгие проверки общей теории относительности Эйнштейна, пытаясь найти признаки квантовой гравитации в ряби пространства-времени, создаваемой столкновениями черных дыр. Одно исследование представляет уравнение поведения черной дыры в рамках теорий квантовой гравитации, основанное на предыдущей работе, а второе предлагает метод применения этого уравнения к данным LIGO, обсерватории гравитационных волн, для обнаружения потенциальных отклонений от общей теории относительности.
New methods will allow for better tests of Einstein's general theory of relativity using LIGOThe Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory supported by the National Science Foundation and operated by Caltech and MIT. It's designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. It's multi-kilometer-scale gravitational wave detectors use laser interferometry to measure the minute ripples in space-time caused by passing gravitational waves. It consists of two widely separated interferometers within the United States—one in Hanford, Washington and the other in Livingston, Louisiana." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]">Данные ЛИГО.
Общая теория относительности Альберта Эйнштейна описывает, как ткань пространства и времени, или пространство-время, искривляется под действием массы. Наше Солнце, например, искажает пространство вокруг нас так, что планета Земля катится вокруг Солнца, как мрамор, брошенный в воронку (Земля не падает на Солнце из-за бокового импульса Земли).
Теория, которая была революционной на тот момент, когда она была предложена в 1915 году, интерпретировала гравитацию как искривление пространства-времени. Какой бы фундаментальной ни была эта теория для самой природы окружающего нас пространства, физики говорят, что это, возможно, не конец истории. Вместо этого они утверждают, что теории квантовой гравитации, которые пытаются объединить общую теорию относительности с квантовой физикой, хранят секреты того, как наша Вселенная работает на самых глубоких уровнях.
Уравнение Донджуна Ли и его коллег описывает, как черные дыры будут звучать в режиме, выходящем за рамки общей теории относительности. Кредит: Калифорнийский технологический институт
One place to search for signatures of quantum gravity is in the mighty collisions between black holes, where gravity is at its most extreme. Black holes are the densest objects in the universe—their gravity is so strong that they squeeze objects falling into them into spaghetti-like noodles. When two black holes collide and merge into one larger body, they roil space-time around them, sending ripples called gravitational wavesGravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]">гравитационные волны расходятся во всех направлениях.
Донджун Ли. Кредит: Калифорнийский технологический институт
The National Science Foundation-funded LIGO, managed by Caltech and MIT, has been routinely detecting gravitational waves generated by black holeA black hole is a place in space where the gravitational field is so strong that not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]"> слияния черных дыр с 2015 года (ее партнерские обсерватории Virgo и KAGRA присоединились к охоте в 2017 и 2020 годах соответственно). Однако до сих пор общая теория относительности выдерживала испытание за испытанием без каких-либо признаков разрушения.
Now, two new Caltech-led papers, in Physical Review X and Physical Review LettersPhysical Review Letters (PRL) is a peer-reviewed scientific journal published by the American Physical Society. It is one of the most prestigious and influential journals in physics, with a high impact factor and a reputation for publishing groundbreaking research in all areas of physics, from particle physics to condensed matter physics and beyond. PRL is known for its rigorous standards and short article format, with a maximum length of four pages, making it an important venue for rapid communication of new findings and ideas in the physics community." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]"Physical Review Letters, describe new methods for putting general relativity to even more stringent tests. By looking more closely at the structures of black holes, and the ripples in space-time they produce, the scientists are seeking signs of small deviations from general relativity that would hint at the presence of quantum gravity./p>
The first study, titled "Perturbations of spinning black holes beyond General Relativity: Modified Teukolsky equation," was funded by the Simons Foundation, the Brinson Foundation, and the National Science Foundation (NSF). Other authors include Nicolás Yunes of the University of Illinois at Urbana-Champaign. The second study, titled "Black Hole Spectroscopy by Mode Cleaning," was funded by the Brinson Foundation, the Simons Foundation, NSF, and the Australian Research Council Center of Excellence for Gravitational Wave Discovery (OzGrav). Ling Sun of the Australian National UniversityFounded in 1946, the Australian National University (ANU) is a national research university located in Canberra, the capital of Australia. Its main campus in Acton encompasses seven teaching and research colleges, in addition to several national academies and institutes." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]"Australian National University is also a co-author./p>New methods will allow for better tests of Einstein's general theory of relativity using LIGOThe Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory supported by the National Science Foundation and operated by Caltech and MIT. It's designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. It's multi-kilometer-scale gravitational wave detectors use laser interferometry to measure the minute ripples in space-time caused by passing gravitational waves. It consists of two widely separated interferometers within the United States—one in Hanford, Washington and the other in Livingston, Louisiana." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]"LIGO data./strong>